jqr tutorial


for v1.0.0


jq is a lightweight and flexible command-line JSON processor, written in C. It’s super fast, and very flexible. jq gives you the ability to index into, parse, and do calculations on JSON data. You can cut up and filter JSON data. You can change JSON key names and values. jq lets you do conditionals and comparisons, and write your own custom functions to operate on JSON data.

You can convert JSON into an R list or other R data structure, and proceed with data parsing, but why not do your JSON parsing on the actual JSON if it’s easy enough? That’s where jq comes in. Doing your data manipulations on the actual JSON makes it easy to pass data to downstream processes that expect JSON.

If you already familiar with jq by using it on the command line you can use the exact same commands with jqr. If you’ve never used jq, jqr makes jq easy to learn with a domain specific language - and you can learn the actual jq syntax as you go and apply it on the command line outside of R.

NSE vs. SE

Many functions in jqr have NSE (non-standard evaluation) as well as SE (standard evaluation) versions, where the NSE version for sorting an array is sortj() whereas the SE version is sortj_(). Some functions only have one version, and behave under SE rules.

When you pass JSON into a function as the first parameter (like ad('["a","b","c"]')) rather than piping it in (like '["a","b","c"]' %>% ad), jq() is not executed. Rather you get back an object of class jqr that holds the data you passed in and the query. To execute the query on the data, run jq(), e.g., like jq(ad('["a","b","c"]')) or ad('["a","b","c"]') %>% jq().

When piping JSON to DSL functions jq() is executed on the last DSL function used.

jqr API

There’s low and high level (or DSL [domain specific language]) interfaces in jqr.

jqr low level interface

The low level and high level interfaces are unified via the function jq(). You can access the low leve interface by using jq() directly, passing a JSON string as the first parameter, the program (query) as the second, and the flags as the third (by default no flags are passed).

For example, a JSON string could be '{"a": 7, "b": 4}', and the program could be ., resulting in

{
    "a": 7,
    "b": 4
}

The program passed is exactly the same as you’d pass on the command line. Because this is a simple replication of the command line in R, there is a higher level interface, or DSL, to make it easier to use jq. Nonetheless, the low level interface is important as some jq veterans may not want to deal with a DSL, and you may need to drop down to the low level interface if the DSL doesn’t work for some reason.

jqr DSL

The jqr DSL uses a suite of functions to construct queries that are executed internally with jq() after the last piped command. We use some logic to determine whether the function call is the last in a series of pipes, and if so, we run jq() on the JSON string and program/query passed.

You don’t have to use pipes - they are optional. Though they do make things easier in that you can build up queries easily, just as you would with jq, or any other tools, on the command line.

  • Execute jq
    • jq - execute jq
  • Utility functions
    • peek - peek at query, without running it
    • string - give back character string
    • combine - combine pieces into proper JSON
  • Identity functions
    • dot - takes its input and produces it unchanged as output.
    • dotstr - produces value at the key ‘foo’
    • index - index to all elements, or elements by name or number
    • indexif - same as above, but shouldn’t fail when not found
  • Operations on keys, or by keys
    • keys - takes no input, and retrieves keys
    • haskey - checks if a json string has a key or keys
    • del - deletes provided keys
  • Maths
    • do - arbitrary math operations
    • lengthj - length
    • sqrtj - square root
    • floorj - returns the floor of its numeric input
    • minj - minimum element of input
    • maxj - maximum element of input
    • add - adds strings or numbers together
    • map - for any filter X, run X for each element of input array
  • Manipulation operations
    • join - join strings on given separator
    • splitj - split string on separator argument
    • ltrimstr - remove given prefix string, if it starts with it
    • rtrimstr - remove given suffix string, if it starts with it
    • startswith - logical output, test if input start with foo
    • endswith - logical output, test if input ends with foo
    • indices - array with numeric indices where foo occurs in inputs
    • tojson - dump values to JSON
    • fromjson - parse JSON into values
    • tostring - convert to string
    • tonumber - convert to number
    • contains - logical output, determine if foo is in the input
    • uniquej - output unique set
    • group - groups the elements having the same .foo field into separate arrays
  • Sort
    • sortj - sort an array
    • reverse - reverse sort an array
  • Types
    • type - select elements by type
    • types - get type for each element
  • Functions
    • funs - Define and use functions
  • Variables
    • vars - Define variables to use later
  • Recursion
    • recurse - Search through a recursive structure - extract data from all levels
  • Paths
    • paths - Outputs paths to all the elements in its input
  • Range
    • rangej - Produce range of numbers
  • Format strings
    • at - Format strings and escaping

Installation

stable version

install.packages("jqr")

dev version

devtools::install_github("ropensci/jqr")

Load jqr

library("jqr")

Usage

Utility functions


Peek

'{"a": 7}' %>% do(.a + 1) %>% peek
#> <jq query>
#>   query: .a + 1
'[8,3,null,6]' %>% sortj %>% peek
#> <jq query>
#>   query: sort

String

'{"a": 7}' %>% do(.a + 1) %>% string
#> [1] "{\"a\": 7}"
'[8,3,null,6]' %>% sortj %>% string
#> [1] "[8,3,null,6]"

Combine

x <- '{"foo": 5, "bar": 7}' %>% select(a = .foo)
combine(x)
#> {
#>     "a": 5
#> }

index

x <- '[{"message": "hello", "name": "jenn"}, {"message": "world", "name": "beth"}]'
x %>% index()
#> [
#>     {
#>         "message": "hello",
#>         "name": "jenn"
#>     },
#>     {
#>         "message": "world",
#>         "name": "beth"
#>     }
#> ]

sort

Note the function name is sortj to avoid collision with base::sort. In addition, a number of other functions in this package that conflict with base R functions have a j on the end.

'[8,3,null,6]' %>% sortj
#> [
#>     null,
#>     3,
#>     6,
#>     8
#> ]

sort in reverse order

'[1,2,3,4]' %>% reverse
#> [
#>     4,
#>     3,
#>     2,
#>     1
#> ]

join

'["a","b,c,d","e"]' %>% join
#> "a, b,c,d, e"
'["a","b,c,d","e"]' %>% join(`;`)
#> "a; b,c,d; e"

starts- and ends-with

'["fo", "foo", "barfoo", "foobar", "barfoob"]' %>% index %>% endswith(foo)
#> [
#>     false,
#>     true,
#>     true,
#>     false,
#>     false
#> ]
'["fo", "foo", "barfoo", "foobar", "barfoob"]' %>% index %>% startswith(foo)
#> [
#>     false,
#>     true,
#>     false,
#>     true,
#>     false
#> ]

contains

'"foobar"' %>% contains("bar")
#> true

unique

'[1,2,5,3,5,3,1,3]' %>% uniquej
#> [
#>     1,
#>     2,
#>     3,
#>     5
#> ]

data types

Get type information for each element

'[0, false, [], {}, null, "hello"]' %>% types
#> [
#>     "number",
#>     "boolean",
#>     "array",
#>     "object",
#>     "null",
#>     "string"
#> ]
'[0, false, [], {}, null, "hello", true, [1,2,3]]' %>% types
#> [
#>     "number",
#>     "boolean",
#>     "array",
#>     "object",
#>     "null",
#>     "string",
#>     "boolean",
#>     "array"
#> ]

Select elements by type

'[0, false, [], {}, null, "hello"]' %>% index() %>% type(booleans)
#> false

keys

Get keys

str <- '{"foo": 5, "bar": 7}'
str %>% keys()
#> [
#>     "bar",
#>     "foo"
#> ]

Delete by key name

str %>% del(bar)
#> {
#>     "foo": 5
#> }
str %>% del(foo)
#> {
#>     "bar": 7
#> }

Check for key existence

str3 <- '[[0,1], ["a","b","c"]]'
str3 %>% haskey(2)
#> [
#>     false,
#>     true
#> ]
str3 %>% haskey(1,2)
#> [
#>     true,
#>     false,
#>     true,
#>     true
#> ]

select

Select variables by name, and rename

'{"foo": 5, "bar": 7}' %>% select(a = .foo)
#> {
#>     "a": 5
#> }

More complicated select(), using the included dataset githubcommits

githubcommits %>%
  index() %>%
  select(sha = .sha, name = .commit.committer.name)
#> Error in eval(lhs, parent, parent): object 'githubcommits' not found

maths

Maths comparisons

'[5,4,2,7]' %>% index() %>% do(. < 4)
#> [
#>     false,
#>     false,
#>     true,
#>     false
#> ]
'[5,4,2,7]' %>% index() %>% do(. > 4)
#> [
#>     true,
#>     false,
#>     false,
#>     true
#> ]
'[5,4,2,7]' %>% index() %>% do(. <= 4)
#> [
#>     false,
#>     true,
#>     true,
#>     false
#> ]
'[5,4,2,7]' %>% index() %>% do(. >= 4)
#> [
#>     true,
#>     true,
#>     false,
#>     true
#> ]
'[5,4,2,7]' %>% index() %>% do(. == 4)
#> [
#>     false,
#>     true,
#>     false,
#>     false
#> ]
'[5,4,2,7]' %>% index() %>% do(. != 4)
#> [
#>     true,
#>     false,
#>     true,
#>     true
#> ]

sqrt

'9' %>% sqrtj
#> 3

floor

'3.14159' %>% floorj
#> 3

find minimum

'[5,4,2,7]' %>% minj
#> 2
'[{"foo":1, "bar":14}, {"foo":2, "bar":3}]' %>% minj
#> {
#>     "foo": 2,
#>     "bar": 3
#> }
'[{"foo":1, "bar":14}, {"foo":2, "bar":3}]' %>% minj(foo)
#> {
#>     "foo": 1,
#>     "bar": 14
#> }
'[{"foo":1, "bar":14}, {"foo":2, "bar":3}]' %>% minj(bar)
#> {
#>     "foo": 2,
#>     "bar": 3
#> }

find maximum

'[5,4,2,7]' %>% maxj
#> 7
'[{"foo":1, "bar":14}, {"foo":2, "bar":3}]' %>% maxj
#> {
#>     "foo": 1,
#>     "bar": 14
#> }
'[{"foo":1, "bar":14}, {"foo":2, "bar":3}]' %>% maxj(foo)
#> {
#>     "foo": 2,
#>     "bar": 3
#> }
'[{"foo":1, "bar":14}, {"foo":2, "bar":3}]' %>% maxj(bar)
#> {
#>     "foo": 1,
#>     "bar": 14
#> }

Citing

To cite jqr in publications use:


Rich FitzJohn, Jeroen Ooms, Scott Chamberlain and Stefan Milton Bache (2017). jqr: Client for ‘jq’, a ‘JSON’ Processor. R package version 1.0.0. https://CRAN.R-project.org/package=jqr

License and bugs

Back to top