elastic tutorial


for v1.0.0


elastic is an R client for Elasticsearch. This tutorial is an introduction to the package.

Installation

You can install from CRAN

install.packages("elastic")

Or the development version from GitHub

install.packages("devtools")
devtools::install_github("ropensci/elastic")

Then load the package

library("elastic")

Elasticsearch

Elasticsearch info

Install Elasticsearch

w/ Docker

Pull the official elasticsearch image

docker pull elasticsearch

Then start up a container

docker run -d -p 9200:9200 elasticsearch

Then elasticsearch should be available on port 9200, try curl localhost:9200 and you should get the familiar message indicating ES is on.

If you’re using boot2docker, you’ll need to use the IP address in place of localhost. Get it by doing boot2docker ip.

on OSX

  • Download zip or tar file from Elasticsearch see here for download, e.g., curl -L -O https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.1.1-darwin-x86_64.tar.gz
  • Extract: tar -zxvf elasticsearch-7.1.1-darwin-x86_64.tar.gz
  • Move it: sudo mv elasticsearch-7.1.1 /usr/local
  • Navigate to /usr/local: cd /usr/local
  • Delete symlinked elasticsearch directory: rm -rf elasticsearch
  • Add shortcut: sudo ln -s elasticsearch-7.1.1 elasticsearch (replace version with your version)

You can also install via Homebrew: brew install elasticsearch

Note: for the 1.6 and greater upgrades of Elasticsearch, they want you to have java 8 or greater. I downloaded Java 8 from here http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html and it seemed to work great.

Start Elasticsearch

  • Navigate to elasticsearch: cd /usr/local/elasticsearch
  • Start elasticsearch: bin/elasticsearch

I create a little bash shortcut called es that does both of the above commands in one step (cd /usr/local/elasticsearch && bin/elasticsearch).

Note: Windows users should run the elasticsearch.bat file

Initialize connection

The function connect() is used before doing anything else to set the connection details to your remote or local elasticsearch store. The details created by connect() are written to your options for the current session, and are used by elastic functions.

x <- connect()

On package load, your base url and port are set to http://127.0.0.1 and 9200, respectively. You can of course override these settings per session or for all sessions.

Get some data

Elasticsearch has a bulk load API to load data in fast. The format is pretty weird though. It’s sort of JSON, but would pass no JSON linter. I include a few data sets in elastic so it’s easy to get up and running, and so when you run examples in this package they’ll actually run the same way (hopefully).

I have prepare a non-exported function useful for preparing the weird format that Elasticsearch wants for bulk data loads, that is somewhat specific to PLOS data (See below), but you could modify for your purposes. See make_bulk_plos() and make_bulk_gbif() here.

Shakespeare data

Elasticsearch provides some data on Shakespeare plays. I’ve provided a subset of this data in this package. Get the path for the file specific to your machine:

shakespeare <- system.file("examples", "shakespeare_data.json", package = "elastic")
# If you're on Elastic v6 or greater, use this one with 1 type instead of 3:
shakespeare <- system.file("examples", "shakespeare_data_.json", package = "elastic")

Then load the data into Elasticsearch:

make sure to create your connection object with connect()

# x <- connect()  # do this now if you didn't do this above
invisible(docs_bulk(x, shakespeare))

If you need some big data to play with, the shakespeare dataset is a good one to start with. You can get the whole thing and pop it into Elasticsearch (beware, may take up to 10 minutes or so.):

curl -XGET https://download.elastic.co/demos/kibana/gettingstarted/shakespeare_6.0.json > shakespeare.json
curl -XPUT localhost:9200/_bulk --data-binary @shakespeare.json

Public Library of Science (PLOS) data

A dataset inluded in the elastic package is metadata for PLOS scholarly articles. Get the file path, then load:

if (index_exists(x, "plos")) index_delete(x, "plos")
#> $acknowledged
#> [1] TRUE
plosdat <- system.file("examples", "plos_data.json", package = "elastic")
invisible(docs_bulk(x, plosdat))

More data sets

There are more datasets formatted for bulk loading in the ropensci/elastic_data GitHub repository. Find it at https://github.com/ropensci/elastic_data

Search the plos index and only return 1 result

Search(x, index = "plos", size = 1)$hits$hits
#> [[1]]
#> [[1]]$`_index`
#> [1] "plos"
#> 
#> [[1]]$`_type`
#> [1] "article"
#> 
#> [[1]]$`_id`
#> [1] "0"
#> 
#> [[1]]$`_score`
#> [1] 1
#> 
#> [[1]]$`_source`
#> [[1]]$`_source`$id
#> [1] "10.1371/journal.pone.0007737"
#> 
#> [[1]]$`_source`$title
#> [1] "Phospholipase C-β4 Is Essential for the Progression of the Normal Sleep Sequence and Ultradian Body Temperature Rhythms in Mice"

Search the plos index, and the article document type, and query for antibody, limit to 1 result

Search(x, index = "plos", type = "article", q = "antibody", size = 1)$hits$hits
#> [[1]]
#> [[1]]$`_index`
#> [1] "plos"
#> 
#> [[1]]$`_type`
#> [1] "article"
#> 
#> [[1]]$`_id`
#> [1] "813"
#> 
#> [[1]]$`_score`
#> [1] 5.18676
#> 
#> [[1]]$`_source`
#> [[1]]$`_source`$id
#> [1] "10.1371/journal.pone.0107638"
#> 
#> [[1]]$`_source`$title
#> [1] "Sortase A Induces Th17-Mediated and Antibody-Independent Immunity to Heterologous Serotypes of Group A Streptococci"

A bool query

mmatch <- '{
 "query": {
   "bool" : {
     "must_not" : {
       "range" : {
         "speech_number" : {
           "from" : 1, "to": 5
}}}}}}'
unlist(sapply(Search(x, index="shakespeare", body=mmatch)$hits$hits, function(x) x$`_source`$speech_number))
#> [1] 6 6 7 7 7 7 7

Range query

With numeric

body <- list(query=list(range=list(decimalLongitude=list(gte=1, lte=3))))
Search(x, 'gbif', body=body)$hits$total
#> $value
#> [1] 24
#> 
#> $relation
#> [1] "eq"

With dates

body <- list(query=list(range=list(eventDate=list(gte="2012-01-01", lte="now"))))
Search(x, 'gbif', body=body)$hits$total
#> $value
#> [1] 301
#> 
#> $relation
#> [1] "eq"

More-like-this query (more_like_this can be shortened to mlt)

body <- '{
 "query": {
   "more_like_this": {
     "fields": ["abstract","title"],
     "like": "and then",
     "min_term_freq": 1,
     "max_query_terms": 12
   }
 }
}'
Search(x, 'plos', body=body)$hits$total
#> $value
#> [1] 488
#> 
#> $relation
#> [1] "eq"

Highlighting

body <- '{
 "query": {
   "query_string": {
     "query" : "cell"
   }
 },
 "highlight": {
   "fields": {
     "title": {"number_of_fragments": 2}
   }
 }
}'
out <- Search(x, 'plos', 'article', body=body)
out$hits$total
#> $value
#> [1] 58
#> 
#> $relation
#> [1] "eq"
sapply(out$hits$hits, function(x) x$highlight$title[[1]])[8:10]
#> [1] "Functional Analysis of the Drosophila Embryonic Germ <em>Cell</em> Transcriptome by RNA Interference"
#> [2] "Diversin Is Overexpressed in Breast Cancer and Accelerates <em>Cell</em> Proliferation and Invasion" 
#> [3] "c-FLIP Protects Eosinophils from TNF-α-Mediated <em>Cell</em> Death In Vivo"

Get documents

Get document with id=4

docs_get(x, index = 'plos', type = 'article', id = 4)
#> $`_index`
#> [1] "plos"
#> 
#> $`_type`
#> [1] "article"
#> 
#> $`_id`
#> [1] "4"
#> 
#> $`_version`
#> [1] 1
#> 
#> $`_seq_no`
#> [1] 4
#> 
#> $`_primary_term`
#> [1] 1
#> 
#> $found
#> [1] TRUE
#> 
#> $`_source`
#> $`_source`$id
#> [1] "10.1371/journal.pone.0107758"
#> 
#> $`_source`$title
#> [1] "Lactobacilli Inactivate Chlamydia trachomatis through Lactic Acid but Not H2O2"

Get certain fields

docs_get(x, index = 'plos', type = 'article', id = 4, fields = 'id')
#> $`_index`
#> [1] "plos"
#> 
#> $`_type`
#> [1] "article"
#> 
#> $`_id`
#> [1] "4"
#> 
#> $`_version`
#> [1] 1
#> 
#> $`_seq_no`
#> [1] 4
#> 
#> $`_primary_term`
#> [1] 1
#> 
#> $found
#> [1] TRUE

Get multiple documents at once

Same index and type, different document ids

docs_mget(x, index = "plos", type = "article", id = 1:2)
#> $docs
#> $docs[[1]]
#> $docs[[1]]$`_index`
#> [1] "plos"
#> 
#> $docs[[1]]$`_type`
#> [1] "article"
#> 
#> $docs[[1]]$`_id`
#> [1] "1"
#> 
#> $docs[[1]]$`_version`
#> [1] 1
#> 
#> $docs[[1]]$`_seq_no`
#> [1] 1
#> 
#> $docs[[1]]$`_primary_term`
#> [1] 1
#> 
#> $docs[[1]]$found
#> [1] TRUE
#> 
#> $docs[[1]]$`_source`
#> $docs[[1]]$`_source`$id
#> [1] "10.1371/journal.pone.0098602"
#> 
#> $docs[[1]]$`_source`$title
#> [1] "Population Genetic Structure of a Sandstone Specialist and a Generalist Heath Species at Two Levels of Sandstone Patchiness across the Strait of Gibraltar"
#> 
#> 
#> 
#> $docs[[2]]
#> $docs[[2]]$`_index`
#> [1] "plos"
#> 
#> $docs[[2]]$`_type`
#> [1] "article"
#> 
#> $docs[[2]]$`_id`
#> [1] "2"
#> 
#> $docs[[2]]$`_version`
#> [1] 1
#> 
#> $docs[[2]]$`_seq_no`
#> [1] 2
#> 
#> $docs[[2]]$`_primary_term`
#> [1] 1
#> 
#> $docs[[2]]$found
#> [1] TRUE
#> 
#> $docs[[2]]$`_source`
#> $docs[[2]]$`_source`$id
#> [1] "10.1371/journal.pone.0107757"
#> 
#> $docs[[2]]$`_source`$title
#> [1] "Cigarette Smoke Extract Induces a Phenotypic Shift in Epithelial Cells; Involvement of HIF1α in Mesenchymal Transition"

Different indeces, types, and ids

docs_mget(x, index_type_id = list(c("plos", "article", 1), c("gbif", "record", 1)))$docs[[1]]
#> $`_index`
#> [1] "plos"
#> 
#> $`_type`
#> [1] "article"
#> 
#> $`_id`
#> [1] "1"
#> 
#> $`_version`
#> [1] 1
#> 
#> $`_seq_no`
#> [1] 1
#> 
#> $`_primary_term`
#> [1] 1
#> 
#> $found
#> [1] TRUE
#> 
#> $`_source`
#> $`_source`$id
#> [1] "10.1371/journal.pone.0098602"
#> 
#> $`_source`$title
#> [1] "Population Genetic Structure of a Sandstone Specialist and a Generalist Heath Species at Two Levels of Sandstone Patchiness across the Strait of Gibraltar"

Citing

Scott Chamberlain (2019). elastic: General Purpose Interface to Elasticsearch. R package version 1.0.0. https://cran.rstudio.com/package=elastic

License and bugs

Back to top